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Abstract--A major problem in strain analysis of ellipsoidal fabrics is how to separate the effects of initial 
preferred orientation of objects from the effects of strain. New algebraic methods are presented here which apply 
to many of the situations previously analysed by graphical and iterative techniques. The algebraic solutions are 
simple and highlight some assumptions implicit in previous methods, and the relations between those methods. 
It is shown that many final ellipsoidal fabrics cannot be produced from initial fabrics which were symmetric with 
respect to bedding, and that a three-dimensional analysis is preferable to analysis on two-dimensional section 
planes. 

INTRODUCTION 

MANY methods exist to deduce the strains in deformed 
rocks by measuring deformed ellipsoidal and elliptical 
objects (e.g. Cloos 1947, Ramsay 1967, Dunnet 1969, 
Oertel 1970, Elliott 1970, Dunnet & Siddans 1971, 
Shimamoto & Ikeda 1976). In early studies the simplest 
assumption about the pre-deformation shapes of the 
objects was made, namely that they approximated in 
shape to spheres. However, the strain ellipsoid deduced 
by this method does not always have the cleavage as its 
XY symmetry plane. This can be interpreted to mean 
that the cleavage does not reflect the symmetry of the 
strain ellipsoid, that markers and matrix did not deform 
homogeneously, or that the marker objects had an initial 
preferred orientation. This paper discusses the last possi- 
bility. 

Elliott (1970) described several types of initial pre- 
ferred orientation of clasts in sediments. The distri- 
butions of these shapes are symmetric with respect 
to bedding. Oertel (1970) postulated that a bedding- 
symmetric fabric in an accretionary lapilli tuff could 
have resulted from compaction of an unconsolidated tuff 
in which the lapilli had no preferred orientation. Roberts 
& Siddans (1971) made a similar assumption about 
pumice shards in ignimbrites. Dunnet & Siddans (1971) 
assume that the initial fabric of clasts in grits and con- 
glomerates is bedding-symmetric. Thus, the assumption 
that strain markers in bedded rocks had an initial bed- 
ding-symmetric fabric has been applied in a variety of 
situations. 

To deduce the strain in rocks with initial bedding- 
symmetric fabrics, two main types of approach have 
been taken. Analysis on two-dimensional section planes 
has been proposed by Elliott (1970), Siddans (1971), 
Dunnet & Siddans (1971) and Matthews et al. (1974). 
Alternatively a three-dimensional algebraic approach is 
taken by Oertel (1970), modified by Bell (1979). These 
two approaches do not always give comparable results 
(e.g. Helm & Siddans 1971). In addition to this problem, 
early methods do not give precisely defined answers: 

that of Elliott (1970) is graphical, and Oertel (1970) 
solves his equations by trial-and-error. Later methods 
attempt to give numerical objectivity but are complex: 
Dunnet & Siddans (1971) presented an iterative un- 
straining procedure and Bell (1979) used iteration in two 
dimensions. 

This paper shows that iterative solutions are unnecess- 
ary and that there are analytical solutions, best expressed 
in terms of tensor algebra, for both the 2D and 3D cases. 
Consideration of the relation between the 2D and 3D 
approaches shows that there are hidden assumptions in 
some existing methods, and the new analysis allows the 
two methods to be reconciled. The new methods use 
very simple assumptions but give numerical assessments 
of their validity. In the first part of this paper the 
methodology is justified for the 2D case, and in the 
second part it is extended to 3D situations. Finally the 
2D and 3D approaches are compared. 

TWO-DIMENSIONAL STRAIN ANALYSIS 
INVOLVING AN INITIAL FABRIC 

The 2D case here refers to strain analysis on a section 
plane. Suppose that the section plane displays a set of 
deformed elliptical markers, a bedding trace and a 
cleavage trace. The cleavage trace on the section plane 
will be parallel to the long axis of the strain ellipse if (1) 
the section plane is perpendicular to the cleavage ( X Y )  
plane or (2) the section plane contains a lineation inter- 
preted as the X direction. When plotted on an ellipse- 
shape-orientation grid (e.g. Dunnet 1969, Elliott 1970, 
Wheeler 1984) the distribution may be asymmetric with 
respect to cleavage. For instance, on a modified Elliott 
plot (Wheeler 1984), the centre of gravity of the distri- 
bution may not lie on the cleavage trace. This may arise 
because the markers had an initial preferred orientation 
of long axes. As discussed above, it is often considered 
reasonable to assume that the initial distribution of 
ellipses was symmetric with respect to bedding: their 
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long axes were distributed symmetrically about the bed- 
ding trace. 

The preferred orientation of a distribution of ellipses 
can be described by combining the shape and orientation 
of each ellipse into an average ellipse, which will be 
referred to as the 'fabric ellipse' (Wheeler in press). In 
the simplest case when all the ellipses have identical 
shape and orientation, the fabric ellipse also has this 
shape and orientation. If the ellipses vary in shape but 
have a uniform angular distribution of long axes (no 
preferred orientation) then the fabric ellipse is a circle. 
In general the fabric ellipse is defined by the 'tensor 
average' of all the ellipse shapes (Shimamoto & Ikeda 
1976, Wheeler in press). 

The fabric ellipse itself implies nothing about the 
strain which the distribution has undergone; it simply 
summarizes the average properties of the distribution, 
whether these result from deformation or other pro- 
cesses. Nevertheless it has an important property related 
to its behaviour when the distribution is deformed: an 
initial fabric ellipse deforms exactly as if it were a 
material ellipse subject to the same strain as the distribu- 
tion. In addition, the fabric ellipse must have the same 
symmetry as the distribution, or be more symmetric. So, 
in a bedding-symmetric distribution, the initial fabric 
ellipse should have the bedding line as a symmetry axis, 
that is the bedding should be parallel to the major or 
minor axis. These two properties together make the 
fabric ellipse a useful tool in strain analysis. Any problem 
involving the homogeneous deformation of a set of 
ellipses may be reduced to a problem involving a single 
ellipse: specifically, the factorization of the final (ob- 
served) fabric ellipse into a tectonic strain superimposed 
on an initial fabric ellipse which satisfied some symmetry 
criterion. Having simplified the problem in this way, the 
next step is to ask whether an analytic solution exists for 
this factorization. 

The mathematical formalism behind this is indepen- 
dent of whether the initial fabric was produced by defor- 
mation or, for example, by a sedimentary process. If the 
initial fabric was produced by bedding-symmetric defor- 
mation of a random distribution then the problem is one 
of superimposed strains: for instance in lapilli tufts, the 
initial ellipsoidal fabric may be produced by compac- 
tional deformation, and the slaty cleavage during later 
tectonic deformation. Then the final fabric ellipse is the 
strain ellipse of the total deformation; and the total 
deformation tensor is the product of the deformation 
tensors for each stage [Elliott 1972 eqn (5), Ramberg 
1975, Schwerdtner & Gapais 1983 eqn (la), Wheeler 
1984 eqn (A1)]. From this may be deduced the relation 
between the strain ellipse resulting from the first strain 
and the total strain ellipse resulting from the two 
superimposed strains as shown in eqn (3) of Appendix 1 
[Dunnet 1969 eqn (8a), Shimamoto & Ikeda 1976 eqn 
(22), Wheeler 1984 eqn (A2)]. If the initial fabric results 
from some non-tectonic process then it may still be 
thought of as the result of a 'virtual strain' imposed on a 
random distribution (Robin 1977). In this way the 
mathematical treatment of the two cases (tectonic or 

Fig. 1. The geometric significance of Nb where b is the normal vector 
to a tangent line (or tangent plane in 3D) and N is the ellipse shape 
tensor. Nb joins the ellipse centre to the point where the tangent 

touches the ellipse. 

non-tectonic initial fabric) is seen to be identical. In this 
paper no assumption is needed about the origin of the 
initial distribution and so the non-genetic term 'fabric 
ellipse' is appropriate. Any cleavage or lineation in the 
rock is supposed to relate to the symmetry of the tectonic 
strain postdating production of the initial fabric. 

In Appendix 1 it is shown that an analytical solution 
for the factorization exists for 2D analysis on a section 
plane. In this derivation, linear features such as bedding 
and cleavage traces are described by vectors of unit 
magnitude perpendicular to the traces. Ellipses includ- 
ing tne strain and fabric ellipses are conveniently des- 
cribed by second-rank 'shape tensors'. These are tensors 
whose principal vectors are parallel to the ellipse's axes, 
and whose principal values are the squares of the axial 
lengths. Thus, the shape tensor for the strain ellipse is 
the Finger tensor. In general the shape tensor is defined 
algebraically [Wheeler 1984 eqn (A7)]. In addition to 
these quantities, the vector K is introduced, which may 
be visualized as follows. Figure 1 illustrates the geo- 
metric significance of the vector Nb for an ellipse whose 
ellipse tensor is N. Thus K is a vector parallel to the line 
joining the centre of the fabric ellipse to the point where 
the bedding is tangent to that ellipse (Fig. 2). So eqn (12) 

bedding 
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Fig. 2. The initial (1) and final (2) configurations of the fabric in a 
deformed sediment, IF and FF, initial and final fabric ellipses; IS and 
FS, initial and final strain ellipses. The initial strain ellipse is a circle. 
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Fig. 3. The meaning of the angles ~ and w. 

is an algebraic expression of the observation that the 
final fabric and strain ellipses touch where their common 
tangent is parallel to bedding. As eqn (20) shows, the 
strain ratio may be expressed in terms of the angles t/, 
and oJ (Fig. 3) or in terms of vector dot products. 

An example is given to illustrate the calculation 
involved in this method. Suppose that we have a section 
plane on which the cleavage trace pitches at 0 °, and the 
bedding trace pitches at 53 ° =  arctan (4/3). Set up 
Cartesian coordinates with x parallel to cleavage trace 
and y pointing down the plane of section. Then the 
vector b is perpendicular to bedding and is given by 

b = [ -s in  53 °, cos 53 °] = [-4/5,  3/5] 

and 

c = [0, 1]. 

Suppose that the final fabric ellipse has its long axis 
pitching at 45 ° and an axial ratio of 2. Then 

(2+ 1/2) + (2 -  1/2)cos90 °, ( 2 -  1/2)sin90 °] 
N = (1/2) (2 - 1/2) sin 90 °, (2 + 1/2) - (2 - 1/2) cos 90°J 

= [5 /4 ,3 /4 ]  

L3/4, 5/4] 

To find K, 

r5/4, 3/41 [-4/51 = [-11/20 l. 
K = L3/4 ' 5 /4j  L 3/5j  [ 3 /20]  

from which 

and, knowing 

we find 

tan 4; = 11/3 

tan oJ = 4/3 

A 2 = 11/4. 

It may be verified that removing this strain ratio from the 
fabric ellipse and from the bedding line brings them into 
symmetry. 

There are three inbuilt tests of the validity of the 
assumptions in this method. First, the right-hand side of 
the expression (19) could be negative, in which case A~ is 
imaginary and the problem has no solution. This means 
that not all ellipse distribution-bedding-cleavage re- 
lations can be developed from initial bedding-symmetric 
distributions. Secondly, A 1 may be real but less than 1. 
This would imply that the cleavage was parallel to the 
short axis of the strain ellipse. Thirdly, w may be greater 
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Fig. 4. The relation between cleavage and the fabric ellipse giving rise 
to a limited field of admissible bedding lines (stippled). See text for 

explanation. 

than 1. Now w relates to the axis of the initial fabric 
ellipse which is perpendicular to bedding. If w > 1, the 
initial fabric was elongate perpendicular to bedding: the 
author knows of no recorded situation of such a fabric 
being observed. The occurrence of any one of these 
problems would indicate that one or more of the funda- 
mental assumptions was wrong. 

To understand the limitations imposed upon bedding 
orientation if the initial fabric was bedding-symmetric, 
consider Fig. 4. This shows a final fabric ellipse in 
relation to the cleavage line A - O - E .  To unstrain this, a 
deformation D -1 is applied. This reciprocal finite defor- 
mation can always be factorized as follows: (1) a coaxial 
irrotational deformation with stretching perpendicular 
to cleavage, but no stretch along cleavage (this does not 
conserve area); (2) an isotropic area change to give the 
finite area change as a result of (1) and (2); and (3) a 
rotation. 

Neither the isotropic area change, nor the rotation, 
will change the relative angular relations between lines 
in the rock. Therefore we need only consider the effect 
of step 1, where unstraining consists of moving material 
points along perpendicular lines away from the cleavage. 
Material points B and C are where the ellipse touches a 
rectangle inscribed on the rock, and material point D is 
where the cleavage normal intersects the ellipse. 

The line OL is the long axis of the fabric ellipse and is 
not a material line. During unstraining, it is confined 
between material lines OB and OC. So if the bedding 
line does not lie in this range, it will never coincide with 
the long axis of the fabric ellipse. Similarly, if it is not in 
the range OD to OE it will never coincide with the short 
axis. This type of argument can be extended to label all 
the regions of the ellipse according to what A~ and w 2 will 
be like, given a bedding line in that region. As discussed 
above, the only geologically realistic solutions are those 
with A~ > 1 and w 2 < 1. This confines the bedding line 
to the narrow sector between OL and OC. 

If the final bedding is parallel or perpendicular to the 
cleavage, infinite or indeterminate strains are yielded by 
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Fig. 5. Data from Dunnet & Siddans (1971) plotted on a modified Elliott plot (Wheeler 1984). 'O' marks the origin of the 
plot, and the scale gives ellipse axial ratios as a function of distance from the origin. The angle an ellipse long axis makes 
with a reference line is doubled and used as angular coordinate on the plot. The left-hand diagram illustrates a measured 
ellipse distribution which is asymmetric to bedding. The open square marks the fabric ellipse; the filled square the strain 
ellipse as calculated from eqn (l 9). The two 'onion curves' are the loci of all those ellipses having pre-compaction axial ratios 
of 1.5 and 2,0 (the fabric ellipse has an axial ratio of c. 2 and therefore the R = 2 onion goes through the plot origin). The 
unstrained distribution (right) shows the initial fabric ellipse lying on the initial bedding line. The initial bedding-parallel 

fabric is assumed, in this accretionary lapilli tuff, to be due to compaction. 

(19). This agrees with other work: because the bedding 
is unaltered by removing strain, the marker  ellipses can 
never be brought into symmetry with bedding. The only 
exception to this is when the final fabric is still parallel to 
bedding. This case will be discussed later. 

Figure 5 shows an application of the new method to 
the data of Dunnet  & Siddans (1971 fig. 11B). The strain 
ratio is 1.67 and the initial fabric ratio is 1.30; both values 
are in good agreement with their estimates. 

The applicability of two-dimensional strain analysis 

Dunnet  & Siddans (1971) used a 2D method of strain 
analysis (formalized as the program STRANE)  on each 
of three section planes, and deduced the strain ellipsoid 
by combining the three sectional strain ellipses. The 2D 
method minimizes the difference between the bedding 
trace and the mean long axis of the 2D ellipse distri- 
bution. There is little conceptual difference between the 
mean long axis, and the long axis of the mean (i.e. fabric) 
ellipse. For this reason the assumptions on which the 2D 
method of this paper are based are similar to those of 
Dunnet  & Siddans (1971). These are (1) initially the 
bedding trace was parallel to the long axis of the section 
through the initial fabric ellipsoid and (2) the cleavage 
trace is parallel to the long axis of the section ellipse 
through the strain ellipsoid. 

To consider the effect of sectioning on symmetry, note 
that a triaxial ellipsoid is symmetric with respect to, for 
example, its XY plane, while the section ellipse on a 
plane oblique to all axes is not symmetric to the X Y  
plane trace. Symmetry only occurs when the section 
plane contains one or more of the principal axes of the 
ellipsoid, or on every section plane if the ellipsoid is 
uniaxial. 

Dunnet  & Siddans (1971) use their method on section 
planes parallel or perpendicular to the cleavage and this 
is valid even if the fabric ellipsoid is triaxial. In addition 
the initial fabric ellipsoid must be assumed to be uniaxial, 
since section planes are not in general in any special 
orientation relative to the initial fabric. It is this assump- 
tion which can be tested by devising a fully 3D algebraic 
method and comparing the 2D method with it. 

THREE-DIMENSIONAL STRAIN ANALYSIS 
INVOLVING INITIAL FABRIC 

It is possible to classify strain marker fabrics on the 
basis of their symmetry to bedding. Dunnet  & Siddans 
(1971) recognized three types of strain marker fabrics of 
which one, the 'imbricate' fabric, is asymmetric to bed- 
ding and is not discussed further. The 'planar' and 
'random-imbricate'  fabrics are symmetric to bedding 
and also have a rotational symmetry about the bedding 
normal. As in the two-dimensional case, the fabric 
ellipsoid must have the symmetry of the distribution, 
and so must be uniaxial with the bedding normal as 
unique axis. Similarly, the initial fabric resulting from 
compaction of initial random sedimentary fabrics (e.g. 
accretionary lapilli, see Oertel 1970) will also be uniaxial 
(Sanderson 1976). 

The only basic criterion for the following analysis is 
that the initial fabric ellipsoid is assumed to have the 
bedding normal as a principal axis. So it can deal with 
planar, random-imbricate and compactional fabrics, 
and also with 'triaxial-symmetric' fabrics. A triaxial- 
symmetric fabric is defined as follows: any distribution 
which is symmetric with respect to bedding but where 
the ellipsoids have a preferred orientation within bed- 
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ding. The author knows of no reference to such a fabric, 
and they are unlikely to be produced in clasts by 
sedimentary processes. However, Roberts & Siddans 
(1971) deduce a triaxial 'welding deformation ellipsoid' 
for pumice shards in an ignimbrite. They interpret this as 
due to a component of downhill flow and extension 
during compaction. Triaxial-symmetric fabrics are 
important simply because they are often predicted 
(sometimes implicitly) by many existing methods of 
strain analysis. 

As in the 2D case, the first step in the analysis is the 
determination of the fabric ellipsoid. This can be done 
by determining a best-fit ellipsoid to the elliptical sec- 
tions measurable on section-planes (e.g. Owens 1984). 
Alternative methods are discussed by Wheeler (in 
press). In the following discussion it will be assumed that 
the fabric ellipsoid has been determined. It must then be 
factorized into an initial fabric and a superimposed 
strain. 

STRAIN ANALYSIS OF ROCKS WITH 
CLEAVAGE AND LINEATION 

In deformed lapiUar tufts from the Lake District, a 
lineation is present on the cleavage surfaces which is 
interpreted as indicating the long axis of the finite strain 
ellipsoid (Oertel 1970, Bell 1979). So the cleavage and 
lineation together define the orientation of the strain 
ellipsoid. In Appendix 2 it is shown that this information 
is sufficient to define the state of strain in the rock. 
Equations (27) and (28) are the analytic solution to the 
problem which has been treated by trial and error 
(Oertel 1970) and by a complex procedure involving 
iteration with two variables (Bell 1979). 

As in the 2D case, solutions are only geologically valid 
if w > 0 and A1 > A2 > A3 > 0. Consideration of eqns 
(24)-(26) shows that this constrains bf and K to lie in the 
same octant of the strain ellipsoid; i.e. they must not be 
separated by a principal plane of that ellipsoid. It can be 
seen that the solution to the problem is exactly specified 
by known bedding, cleavage, lineation and final fabric 
ellipsoid. It is important to note that the initial fabric 
ellipsoids deduced by this method will in general be 
triaxial-symmetric. 

STRAIN ANALYSIS IN ROCKS WITH 
CLEAVAGE BUT NO LINEATION 

Some authors (e.g. Dunnet & Siddans 1971) have 
produced results from rocks with bedding and cleavage 
but no lineation. Since the problem is only just specified 
when there is a known lineation, it is underspecified 
when the lineation is unknown. To deduce the strain, 
some additional assumption must be made. As discussed 
above, many initial bedding-symmetric fabrics are uni- 
axial. This assumption can be incorporated into the 
method of strain analysis, following the example of 
Oertel (1970) and Dunnet & Siddans (1971). With the 

uniaxial assumption we can see whether an internally 
consistent solution exists. The shape of a triaxial ellip- 
soid is specified by five pieces of information (two axial 
ratios, the trend and plunge of one axis, and the trend of 
another axis). A uniaxial ellipsoid shape only needs 
three pieces of information (one axial ratio and the trend 
and plunge of the unique axis). Compared to the prob- 
lem in the previous section, the absence of lineation 
implies one less item of data, but the assumption that the 
initial fabric ellipsoid was uniaxial reduces the number 
of unknowns by two. Therefore the problem is over- 
specified. 

The uniaxial assumption must therefore force a con- 
straint on the known data: there must be a relationship 
between bedding, cleavage and final fabric ellipsoid. 
Even if the assumption is correct, the real data will suffer 
from measurement errors and will never satisfy the 
constraint exactly. The degree to which it departs from 
the constraint will reflect the validity of the uniaxial 
assumption. The assumption of initial uniaxial fabric is 
comparable to an assumption that the strain ellipsoid is 
uniaxial; either one of these might be appropriate. The 
assumption that the strain ellipsoid is uniaxial is slightly 
simpler algebraically and is discussed first. 

Strain analysis assuming a uniaxial strain ellipsoid 

A uniaxial strain ellipsoid of oblate (k = 0) type does 
not produce a unique stretching direction in the cleavage 
plane, and it is plausible that this can account for the 
absence of lineation in the situation under discussion. In 
Appendix 3, the shape of the strain ellipsoid is defined by 
deriving the value of the quadratic stretch in the cleavage 
plane [eqn (39)]. There are two features of the derivation 
which deserve comment. First, the expression (40) for 
the quadratic stretch is analogous to (20) because A~ is 
the square of the axial ratio of the strain ellipsoid. This, 
then, is an example of a case in which 2D strain analysis 
will work: it works in the plane which contains c, bf and 
K. To see why, consider the behaviour of bedding under 
a uniaxial strain. During strain, the pole to bedding 
moves on a great circle towards the pole to cleavage. 
There fo re ,  bi, bf and c must be coplanar. Hence the 
plane containing c, bf and K also contains h i. Because it 
contains hi, this plane will show an initial fabric ellipse 
symmetric to the bedding trace, even if the initial fabric 
is triaxial. Thus, the 2D method will work on this plane. 

The second feature concerns how the constraint on 
the data manifests itself: it emerges when it is shown that 
the three vectors  bf, 12 and K should be coplanar. Since all 
these vectors are measurable and therefore already 
specified in the problem, this coplanarity is a constraint 
on the input data. The occurrence of such a constraint 
has already been predicted. A measure of the departure 
from coplanarity is given by tx [eqn (35)]. The analytical 
solution is then realistic if ~ is near zero and A 1 > 1. In 
practice because ~ is different from zero, the input data 
must be modified to satisfy the constraint exactly, before 
any other calculations are done. The justification for this 
'modification' will be discussed later. Out of all the 
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pieces of input data, it is the final fabric ellipsoid which is 
subject to the most measurement error, and is likely to 
be responsible for the deviation from the constraint if 
that deviation is statistical in origin. This suggests one 
should correct N~, and a method of doing this is given in 
eqn (42). 

Strain analysis assuming a uniaxial initial fabric ellipsoid 

As discussed by Oertel (1970) and Sanderson (1976), 
many compactional fabrics can be expected to have a 
uniaxial oblate fabric ellipsoid, since in simple cases 
compaction is constrained in all horizontal directions 
within bedding. Derivation of a formula for u, the 
squared length of the bedding-parallel radius of the 
initial fabric ellipsoid, is given in Appendix 4. Knowing 
u, the Finger tensor is given by eqn (58) and this defines 
the state of strain. As before the constraint on the data is 
manifested as the coplanarity of three vectors, and 
departure from this condition is measured by v. 

DISCUSSION 

Table I shows an example of the application of each of 
the new methods to measurements of deformed con- 
glomerates in the Mellene Nappe, Norway. All calcu- 
lations are done by an Algol68 program which is avail- 
able on request. It should be borne in mind that no 

statement can be made about the rotational component 
of the deformation, apart from the fact that the bedding 
was presumably initially horizontal. It is not clear from 
this example alone which of the assumptions about 
strain was valid, if any. The assumption that the initial 
fabric was uniaxial seems intuitively reasonable, but 
predicts a finite stretching direction which is not close to 
the measured lineation. Conversely, assuming the line- 
ation represents X leads to the deduction of a triaxial- 
symmetric initial fabric. 

An important feature of the new methods is the 
introduction of constraints on the input data. In previous 
methods such constraints are present but are not stated 
explicitly. For example the method of Dunnet  & Siddans 
(1971) for analysis on 2D section planes assumes the 
initial fabric is uniaxial (but it has been applied to deduce 
triaxial-symmetric initial fabrics, e.g. Roberts & Siddans 
1971). Having deduced a strain ellipse for each section 
plane, these are combined to form the strain ellipsoid. 
There may be some incompatibility between the strain 
ellipses. In simple situations this incompatibility is 
assumed to be statistical in origin (Milton 1980). It has 
been shown above that not all fabrics can be unstrained 
to uniaxial initial fabrics. Therefore the 'incompatibility' 
that 2D methods can produce is a combination of statis- 
tical effects and the effect of constraints such as (36). To 
fit a 3D ellipsoid to incompatible 2D section ellipses, 
each section ellipse must be corrected. In the new 
methods described here the correction is made explicitly 

Table 1. Results of the application of three different methods of strain analysis to 
data from a deformed conglomerate 

Final fabric ellipsoid 

Axiallengths 0.654 1.104 1.386 
Axial directions 4 2 / 1 8 2  43 /331  16/077 

Bedding 260/55 Cleavage 308/38 Lineation 32/074 

Assume lineation is finite tectonic extension direction 

Strain ellipsoid Initial fabric ellipsoid 
Axiallengths 0.724 1.072 1.288 0.772 1 . 0 1 4  1.278 
Axialdirections 5 2 / 2 1 8  18/332 32 /074  29/158 47/032 29/265 

Initial bedding 247/61 

Assume strain ellipsoid was uniaxial 
Constraint/~ = 0.0785 
Corrected final fabric ellipsoid 

Axiallengths 0.651 1.111 
Axial directions 4 5 / 1 8 1  41/332 

Strain ellipsoid 
Axial lengths 0.754 1.152 
Axial directions 52/218 - -  

Initial bedding 250/63 

1.383 
15/075 

Initial fabric ellipsoid 
0.741 1.036 1.302 

27/160 61/004 10/255 

Assume uniaxial initial fabric 
Constraint v = -0.098l 
Corrected final fabric ellipsoid 

Axial lengths 0.655 1.124 
Axial directions 4 1 / 1 8 3  43/327 

Strain ellipsoid 

1.359 
19/076 

Initial fabric ellipsoid 

Axial lengths 0.776 1.014 1.272 0.724 1.175 
Axialdirections 5 2 / 2 1 8  32 /002  18/104 30/156 - -  

Initial bedding 246/60 



Strain analysis in rocks with pretectonic fabrics 893 

and at the beginning of the calculation. It has nothing to 
do with statistical incompatibility. The effects of this 
should be considered when measuring the final fabric 
ellipsoid, before any unstraining is done. 

As a second example, Oertel (1970) discussed a 3D 
approach to a situation where both cleavage and line- 
ation were known. It was recognized that to unstrain a 
final fabric ellipsoid to an initial uniaxial fabric ellipsoid, 
there must be constraints on the known data. If the 
constraints are satisfied within measurement error,  this 
is evidence in favour of the uniaxial hypothesis. Oertel 
presents a 'calculated' final fabric which differs from the 
'observed'  final fabric. This is another example of the 
correction of a final fabric to fit with a model, and 
confirms that such corrections are intrinsic to the analysis 
of rocks with pretectonic fabrics. 

Any method of strain analysis using angular relations 
between fabric, bedding, etc. breaks down when bed- 
ding and cleavage are parallel or perpendicular, or have 
some symmetry relation to the fabric ellipsoid. Such 
methods become less precise when final geometries are 
close to having some symmetry. In such cases estimates 
of strain can be made by estimating the actual axial 
lengths of the initial fabric ellipsoid. For instance, in the 
2D case we may find the final fabric is parallel to bedding 
and cleavage is parallel or perpendicular to it. An esti- 
mate of the axial ratio of the initial fabric ellipse allows 
the strain to be deduced. In 3D, the method of Owens 
(1974) can be used when the final situation is highly 
symmetric. 

The usefulness of 2D methods can now be discussed. 
It has been pointed out that 2D methods cannot be used 
when the initial fabric was triaxial-symmetric, whereas a 
3D method (the case where the lineation is known) can 
give an answer. Conversely, if the initial fabric is 
assumed uniaxial, 2D methods can be applied, but only 
after the fabric ellipsoid has been adjusted to satisfy the 
essential constraint. Since calculating that correction 
involves a fully 3D analysis, there seems little point in 
returning to the section planes to calculate the strain. In 
addition, some authors (e.g. Bell 1979) have reported 
symmetric ellipse distributions on some section planes, 
when other section planes indicate clearly that the ellipse 
distribution is asymmetric. This is a result of unfortunate 
choice of section planes and means that 2D methods 
cannot be used although a 3D method will yield a result. 

The importance of section plane data is in its potential 
to be displayed graphically. Although the strain ellipsoid 
should be calculated by 3D methods, it is useful to 
unstrain all the section plane data and examine the 
appearance of the initial distribution. It should be borne 
in mind that the initial distribution may look asymmetric 
to the bedding trace on a section plane for several 
distinct reasons. 

(1) The sectional shape of the fabric ellipsoid is not 
necessarily quite the same as the average ellipse shape 
on a section plane (Wheeler in press). 

(2) The fabric ellipsoid may be 'corrected'  to accord 
with constraints. However ,  it is not clear how the raw 
section plane data should be altered to accord with this. 
SG 8 : 8 - ~ )  

A discrepancy is inevitable when the strain has been 
derived from a modified fabric ellipsoid, whereas the 
raw data is unmodified. 

(3) If the initial fabric is triaxial-symmetric, the bed- 
ding trace need not be symmetric to the fabric ellipse. 

(4) The distribution may be asymmetric in some other 
way even if its centroid lies on the bedding trace. An 
example of such an asymmetry is expressed by the 
ISYM3 parameter  of Dunnet  & Siddans (1971). 

CONCLUSIONS 

It has been shown that it is possible to analyse the 
deformation of rocks with pretectonic ellipsoid fabrics 
by considering the fabric ellipsoid (average ellipsoid 
shape) and attempting to factorize the final fabric ellip- 
soid into a tectonic strain superimposed on an initial 
fabric ellipsoid which has bedding as a symmetry plane. 
To do this, some assumptions must be made. The follow- 
ing alternatives have been analysed. 

(1) The lineation is parallel to the long axis of the 
strain ellipsoid. 

(2) The strain ellipsoid is uniaxial. 
(3) The initial fabric ellipsoid was uniaxial. 
An algebraic solution to the factorization can be 

derived in each of these situations. An algebraic solution 
also exists to the 2D problem in which the bedding, 
cleavage and final fabric are known. However,  section 
planes can often show asymmetry even when the 3D 
situation is symmetric, so a 3D algebraic solution is 
always advisable. These algebraic methods are equiva- 
lent to published iterative procedures, but are precise 
and allow the relation between the various approaches 
to be considered. 

The new methods demonstrate when a factorization is 
not possible, and also show up constraints which must 
apply to the measurable data when either of the uniaxial 
assumptions are made. The magnitude of deviation from 
the constraint is expressed numerically by the values/z 
and v, and these can be used on a set of factorizations to 
decide which of the assumptions is in general the most 
appropriate. 
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Table 2. Nomenclature 

X 

b 
e 

I 
q 
m 

g 
D 
N* 
N~ 
AI,A2, A3 
U, V, W 

K 

Q 

V 

t 
o) 

& 
t z ,  t' 

i , f  

position vector 
bedding normal unit vector 
cleavage normal unit vector 
unit vector parallel to lineation 
unit vector orthogonal to e and I 
unit vector parallel to bedding-cleavage intersection 
unit tensor 
deformation tensor 
fabric ellipsoid tensor 
strain ellipsoid tensor (Finger tensor) 
quadratic stretches of strain ellipsoid 
squared lengths of axes of initial fabric ellipsoid 
vector parallel to line joining centre of final fabric 

ellipsoid to point where bedding plane is tangent to it 
vector parallel to line joining centre of final fabric 

ellipsoid to point where cleavage is tangent to it 
unit vector parallel to K 
unit vector parallel to Q 
angle between bf and c 
angle between K and c 
measures of deviation from constraints 
subscripts denoting initial, final. 

A P P E N D I X  1: 2D S T R A I N  A N A L Y S I S  ON A 
S E C T I O N  P L A N E  

The fabric ellipse tensor is a symmetric tensor of unit determinant 
which has its eigenvectors parallel to the ellipse's axes, and its 
eigenvalues are the squares of the lengths of the axes. If N* is the 
fabric ellipse tensor, the equation of the fabric ellipse would be 

x . ( N * )  I x =  1. (1) 

The bedding line will be represented in terms of the unit vector nor- 
mal to it (this is so equations are easily extended to 3D). The normal 
vector b has directional ambiguity (it can point either up or down) but, 
once it is chosen, this does not affect the argument. Let the subscripts 
i and f refer to initial and final quantities (before and after deforma- 
tion). Then the bedding-symmetric condition is written as 

N*b i = wbi, (2) 

where w is an eigenvalue of the initial fabric ellipse. The axis of the 
fabric ellipse perpendicular to bedding has length ",/w. 
Consider a deformation whose deformation tensor (position gra- 

dients tensor) is D. It may be rotational and it may have resulted from 
a non-coaxial strain history, but the calculation is the same in any case. 
For simplicity D will be considered to have unit determinant,  so there 
is no volume change. This avoids carrying det D through all the 
algebra. Nevertheless the method to be described uses only angular 
relations and still gives the shape of the strain ellipsoid even when there 
is volume change. Deformation affects the fabric ellipse tensor as if it 
were a material ellipse tensor. 

N'~ = ON*D T (3) 

and the bedding normal deforms according to 

bf = (Dr)-lbi(bi • (DrD)-lbi)  i/~_ (4) 

(see for instance Owens 1973). The last term in (4) is simply to rescale 
b so it has unit length. These equations can be recast to give the initial 
quantities in terms of the final quantities. 

N* = D tN~(D+) -1 (5) 

and 

bi = DTbf(bf • (DDT)bf) -1/2. (6) 

Substitute (5) and (6) into (2): because the normalization term for b 
appears on both sides, it can be dropped to give 

D-1N'~(D T) tDYbf = wDTbf. (7) 

Dot multiply both sides with a preceding D and simplify to give 

N:~hf = wDDZbf. (8) 

Now the Finger tensor occurs in the expression on the right-hand side 
of the equation, and the Finger tensor is the ellipse tensor (formally 
defined in Wheeler in press) of the strain ellipse, So, if N, is the strain 
ellipse tensor, 

DD T = N s. (9) 

Substitute this in (8) to find 

N~bf = wNsb f. (I0) 

This is a simple formula in which the left-hand side is entirely in terms 
of known quantities; so define 

K = NTbf (11) 

so that 

wNsh f = K, (12) 

The only unknowns in this equation are w and N~ (which is specified by 
an axial ratio and an angle), So (12) represents two equations in three 
unknowns. To obtain the strain ellipse we thus need one further piece 
of information. This is provided by the cleavage line, which is parallel 
to the long axis of the strain ellipse on any section plane perpendicular 
to cleavage. 

Let e be the unit normal vector to the cleavage line, and I be a unit 
vector perpendicular to e and along the cleavage line. Let the quadratic 
stretch along the cleavage be Al, then because the deformation is taken 
as area-conserving for simplicity, the quadratic stretch along c is 1/Av 
So: 

N~I = All (13) 

N~e = (1/a0e. (14) 

Consider dot-multiplying both sides of (11) with I. Then 

wl.(Nsbf) = I ,K (15) 

but the dot products are associative and N is symmetrical so 

w(N~l).bf = I-K (16) 
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and, applying (13), 

w A l l ' b  f = I ' K .  (17)  

A similar procedure using e yields 

(w/A0e.bf = c . K  (18) 

(17) and (18) are two equations in two unknowns, A I and w. Solving for 
3. I gives: 

+ (I. K ) ( c '  b+) 
AT - (19) 

(e. K)(I. bf)' 

Note that A~ is the axial ratio of the strain ellipse as well as the quadratic 
stretch along I. It is straightforward to reexpress this in the cleavage 
coordinate frame. Let ~ be the angle between K and c, and w be the 
angle between bf and c. Then (19) becomes 

A~ - tan 0. (20) 
tan to 

A P P E N D I X  2:  3 D  S T R A I N  A N A L Y S I S  I N  R O C K S  

W I T H  C L E A V A G E  A N D  L I N E A T I O N  

To analyse the situation algebraically, note that the derivation of 
equation (12) can be carried over without alteration to the 3D case. Let 
A 1, A2, A3 be the quadratic stretches of the strain ellipsoid. Let c be the 
unit vector perpendicular to cleavage and parallel to Z; I be parallel to 
the lineation and parallel to X; and q be the unit vector perpendicular 
to both these and hence parallel to Y. Then, similarly to (13) and (14), 
we can write 

N~I = All (21) 

Nsq = A2q (22) 

N~c = A3c (23) 

Dotting (12) with 1, q and c and rearranging as in the 2D case gives: 

WAll. bf = I. K (24) 

wA2q-bf = q . K  (25) 

wA3e .  bf = C" K (26)  

Because det Ns = 1, we have AtA2A3 = 1 and the three equations can 
be solved for w: 

w3 = (I. K)(q .  K) (c -K)  (27) 
(1' b0( q " bf)(e • hf) 

and so 

I .K q . K  c . K  
a I = W~--~.~I , .Jr 2 = a 3 -- . (28)  

w q "  h f '  - we"  bf 

Knowing these quadratic stretches, the corresponding irrotational 
deformation can be calculated, and this substituted in (5) and (6) to 
derive the initial fabric and bedding, specified apart from an unknown 
rotation. 

If we substitute (31) in (12), we have 

W(Alg  + (1/A~ - AI)CC)h f = K. (32) 

We have 

(cc)bf = c(e.bf) (33) 

(Malvern 1969, p. 36) so (32) simplifies to 

w A l b  f + W(1/A~ -- A l ) ( C ' h f ) c  -:- K.  (34)  

This tells us that K is formed by adding multiples of the vectors bf and 
c. Therefore these vectors must be coplanar. Let v be the unit vector 
parallel to K. A useful measure of the deviation from the situation in 
which the constraints are satisfied is given by 

= v.(bf x c) (35) 

so the constraint is 

/z = 0. (36) 

Ideally/z = 0; it can range up to _+ 1. For the moment  assume that the 
input data satisfies the constraint. The two unknowns in equation (34) 
are w and A i. By dot-multiplying the expression with c, one obtains 

w(c.bf)/A~ = c . K  (37) 

and by dot-multiplying (34) with bf, 

w(A, + (I/A~ - A,)(c.b02) = bf.K.  (38) 

w can be eliminated from (37) and (38), and the resulting expression 
solved for & to give 

A~ = e. bf(hf. K - (c. bf)(c. K)) (39) 
c 'K(1 - ( c ' b f )  2) 

Substituting the definitions of 4, and w, (39) reduces to 

A~ - tan 0 (40) 
tan o) 

Given A 1, the irrotational part of the deformation is 

D = Al:2g + (1/AL - AI:2)cc (41) 

which is derived in an analogous way to (31). This can be substituted in 
(5) and (6) to give the initial fabric and bedding. 

As noted in the main text, the data must be adjusted so as to satisfy 
the constraint before the factorization is performed. The correction 
should be made to N'p and chosen so that it vanishes when ~z = 0 and is 
algebraically simple. A convenient correction is 

N~ ~ NT - (K-m)(bfm + mb0 (42) 

where the proportionality sign shows that N~ should be renormalized 
to unit determinant, m is the unit vector parallel to by x c, the 
bedding/cleavage intersection. The corrected version should be used 
all the way through the analysis. 

A P P E N D I X  4:  3 D  S T R A I N  A N A L Y S I S  A S S U M I N G  

U N I A X I A L  I N I T I A L  F A B R I C  E L L I P S O I D  

A P P E N D I X  3:  3 D  S T R A I N  A N A L Y S I S  A S S U M I N G  

A U N I A X I A L  S T R A I N  E L L I P S O I D  

As the strain ellipsoid is uniaxial, for any vector in the cleavage 
plane, the quadratic stretch will be A 1 (= A2). For vectors perpendicu- 
lar to it the quadratic stretch will be A3 = 1/A~. Consider a coordinate 
frame in which c is parallel to the x-axis, so 

N+ = At (29) 

o 1:A~ 

= At 1 + (1 A i - A1) 0 (30) 

0 0 

= &g + (l/X+ - Xt)ec, (31) 

where the last expression is the coordinate-independent form, g is the 
unit tensor and ec is the 'outer product '  of e, given by the last matrix 
term in expression (30). 

To analyse the situation in which the initial fabric ellipsoid is 
assumed uniaxial, eqn (12), though it is still true, cannot be used as a 
starting point since it does not refer directly to the initial fabric 
ellipsoid. By analogy with (31) we can write 

N T = u g  + ( ] / u  2 - u ) b i h  i, (43)  

where u is the squared length of the bedding-parallel radius of the 
fabric ellipsoid, Substitute this into the right-hand side of (3) to find 

N7 -~ D[ug + (1/u 2 - u)bibi]D x (44) 

= uN~ + (I/u: - u)(Dbi)(Dbi). (45) 

Using (6) we find 

D b  i = N s b f ( b f ' N s b f )  -I/2 (46)  

= ( w b  C K ) - : ' K  (47)  

using equation (12). Substituting this in (45), and noting that because 
det N = 1, u2w = 1, find 

N~ = uN+ + ((1 - u3)/bf-K)KK. (48) 

It may be checked, by dot-multiplying both sides of (48) with bf, that 
eqn (12) can be recovered. Instead dot-multiply both sides with e 
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N~c = uA3c + ((1 - u3) (c .K) / (bf 'K))K,  (49) 

where we have assumed the cleavage is a principal plane of the strain 
ellipsoid, and invoked (23). Let 

Q = N~e (50) 

so Q is analogous to K. Q is parallel to the line joining the centre of the 
final fabric ellipsoid to the point where the cleavage plane is tangent to 
that ellipsoid. (49) is analogous to (35). So the constraint in this case is 
that the three vectors Q, c and K should be coplanar. Let t be the unit 
vector parallel to Q, so the constraint is that the unit vectors e, t and v 
should be coplanar. Let 

v = c ' ( t  × v) (51) 

then 

,~ = 0 (52) 

is the constraint. It is shown in Appendix 5 that the constraint (52) is 
equivalent to 

c . (NT)-Im = 0 (53) 

and this suggests that we can correct NT by 

N~ ,c [N~ - ( c ' (NT) - lm) (me  + cm)] -~ (54) 

Equation (49) contains two unknowns, u and ")[3" By dot-multiplying 
(49) with c one obtains 

c . Q  = uA 3 + (1 - u3)(e.K)2/(bf,K) (55) 

and by dotting (49) with be, 

K 'C = uA3e.bf + (1 - u3)(c.K).  (56) 

Note that K.  c = Q. bf. By eliminating A3 from (55) and (56), 

u3 = ( c ' b f ) ( ( c ' Q ) ( b f ' K )  - ( c ' K )  2) (57) 
(c" K)(hf" K - (c" bf)(c'  K)) 

This is more complex than (39). The expression for u involves four 
vectors bf, c, Q and K, only the last three of which are coplanar. 
Therefore it cannot easily be reexpressed in a form referring to angles 
measured in a single plane. To obtain the strain ellipsoid, note that (48) 
can be written 

N~ = (1/u)N 7 + ((u 2 -  1/u)/(bf.K)KK. (58) 

When N~ is found, its eigenvectors and eigenvalues are calculated by 
standard methods (e.g. Ramsay 1967, p. 142) and the irrotational part 
of the deformation is defined. Using this in eqns (5) and (6) gives an 
initial uniaxial ellipsoid, with u as one eigenvalue. 

APPENDIX 5: THE EQUIVALENCE OF 
EXPRESSIONS (52) AND (53) 

The proof that the constraint (52) is equivalent to (53) is as follows. 
We have 

~' = e . ( t  × v) (59) 

~c cp (60) 

where we have defined 

p = (Nbf) × (Nc). 

From the definition of the vector cross-product, note that p is ortho- 
gonal to Nbf, Nc and any arbitrary linear combination of those two 
vectors. Therefore 

p . (aNbf  + /3Nc) = 0 (61) 

for any values of a and/3. Since N is symmetrical this can be rewritten as 

(Np). (abf + /3c) = 0. (62) 

So Np is a vector which is orthogonal to any linear combination of bf 
and c. Any such vector must be proportional to the cross-product of bf 
and c, and therefore to the unit vector parallel to bedding/cleavage 
intersection, m. Thus 

Np ~: m (63) 

and 

p ~ N lm. (64) 

Finally, putting M = N- ~ and using (60), we find v = 0 implies 

c . M m  = 0 

and the result is proved. 


